15 different types of fiberglass

The Manufacturing Process of Fiberglass

After all the raw materials are melted into a ‘bulk’ and passed through spinnerets, fiberglass filaments are produced. The filaments are of two types; Continuous filaments and staple filaments.

Continuous Filament Process

Fiberglass filaments of indefinite length are produced through the continuous filaments process. The spinnerets through which molten fiberglass is passed have numerous (hundreds) small openings. The strands of fiberglass produced are carried to the winder that revolves at a very high speed.

At the end of the process, a yarn of continuous fiberglass filaments is obtained that is used in making drapes and curtains.

Staple Fiber Process

Glass fibers produced through the staple fiber process are long. As the molten bulk passes through small openings, a jet of compressed air converts the streams of molten bulk into long, thin fibers. These fibers form a web that gathers into a sliver.

From the sliver, yarn of fiberglass is made that is then used for insulation purposes in industries.

Извлечение из формы и окончательная обработка

Извлечение изделия из матрицы необходимо производить после набора материалом прочности во избежание его деформации и расслоения. В обычных условиях время высыхания стеклопластика составляет от 12 до 24 часов. Сократить это время можно путем прогрева матрицы инфракрасным излучателем, или поместив ее в сушильную камеру.

Окончательная обработка включает в себя обрезку и шлифовку краев изделия.

В случае необходимости, изделие может быть окрашено в нужный цвет краской на полиуретановой основе. Готовые материалы могут быть склеены друг с другом при помощи полимерных клеевых составов.

Carbon Fiber

Carbon fibers are made from organic polymers and are processed at relatively low temperatures compared to fiberglass. Carbon fibers are crystalline by nature, with low-temperature processing occurring through a series of complex chemical, thermal, and mechanical treatments. The resultant material has one of the highest strength to weight ratios in existence — higher than both steel and titanium.

In 3D printing, carbon fiber is the continuous fiber of choice for stiffness. It’s 25x stiffer than ABS and 2x stiffer than any other Markforged continuous reinforcement fiber.

Compared with 6061 aluminum, 3D printed carbon fiber has a 50% higher strength-to-weight ratio in flexure and 300% in a tensile moment, making this fiber the go-to material for maximal properties.

Carbon fiber continuous reinforcement has been used to create conformal jigs/fixtures and specialty tooling for some of the largest and most prestigious global business through to one-off end-use parts for high-end motorsport applications.

The development of more complex generative-designed components within industry has often led to a complex tooling requirement for “post-finish machining” on expensive 5-axis milling machines. Markforged is actively participating in many benchmarking opportunities around the globe for ultra light-weight, highly “damped” specialty “conformal” tooling, enabling leaders in Industry 4.0 to realize their fullest potential.

What’s the difference between a 3D printer and a CNC machine?

Carbon Fiber vs Fiberglass: The final verdict

Both carbon fiber and fiberglass provide unique benefits and applications based on material needs. Feel free to reach out to us for further help or advice on which is the most appropriate reinforcement fiber for your application.

Fiberglass‍

Fiberglass is made from inorganic silica sand, heated to extremely high temperatures and drawn into amorphous ultra-fine fibrous strands. These long, extremely thin strands of glass possess extremely high tensile strength. Markforged can 3D print two different varieties of fiberglass:

  • Fiberglass
  • High-Strength High-Temperature (HSHT) fiberglass

Reinforcement with continuous strands of fiberglass might well be our “entry-level” fiber, but fiberglass can generate some incredible printed part property improvements. In comparison to ABS for example, printed parts with fiberglass continuous reinforcement fiber are 20x stronger and 10x stiffer in tension than a conventional ABS printed part. For factory floor tooling/fixturing or high-strength prototyping built to a cost, fiberglass continuous fiber is often the perfect choice.

HSHT fiberglass, on the other hand, is best used to replace mission-critical machined aluminum parts. With superior heat resistance and flexural strength, second only to carbon fiber, HSHT fiberglass affords a cost-effective continuous reinforcement solution to many industrial applications that require heat and impact resistance.

Additionally, both fiberglass and HSHT fiberglass provide some potentially unique and beneficial secondary properties. Although the reinforcing fiber is normally contained sub-surface, when a printed part wears, the reinforcement fiberglass or HSHT fiberglass can become exposed. The white fibers of the reinforcing fiberglass or HSHT fiberglass often fray/spread across the wear surface, providing a clear indication of near “end of life”. Additionally, the toughness of the exposed fiber can actually add time to the working life of the part. . Having a clear “visual wear marker” as well a late-stage “wear prevention” characteristic can be useful in real-world industrial/process applications.

Where “failure critical” parts are used under cyclic loading conditions, HSHT fiberglass reinforcement (in particular) can not only offer strength near that of carbon fiber reinforcement without the downside of catastrophic failure. Instead, it yields plastically with minimal energy rebound.

As both fiberglass variants are amorphous, they offer an improved radiolucent solution for many RF/antenna-base applications.

Request a demo

Последние изменения

14.09.2018

Новое лицо, имеющее право действовать без доверенности: Директор Травичев Игорь Николаевич

Лылов Сергей Федорович больше не является лицом, имеющим право действовать без доверенности

19.11.2016

Адрес организации исключен из реестра ФНС Адреса, указанные при государственной регистрации в качестве места нахождения несколькими юридическими лицами

23.10.2016

Адрес организации включен в реестр ФНС Адреса, указанные при государственной регистрации в качестве места нахождения несколькими юридическими лицами

18.08.2016

Новая лицензия № ЛО-33-01-002188 от 15.07.2016, вид деятельности: Медицинская деятельность (за исключением указанной деятельности, осуществляемой медицинскими организациями и другими организациями, входящими в частную систему здравоохранения, на территории инновационного центра «Сколково»)

Удалены сведения о лицензии № ЛО-33-01-001245 от 03.05.2013, вид деятельности: Медицинская деятельность (за исключением указанной деятельности, осуществляемой медицинскими организациями и другими организациями, входящими в частную систему здравоохранения, на территории инновационного центра «Сколково»)

01.08.2016

Организация включена в Реестр малого и среднего предпринимательства, категория: малое предприятие

22.07.2016

Новая лицензия № ЛО-33-01-001245 от 22.04.2013, вид деятельности: Медицинская деятельность (за исключением указанной деятельности, осуществляемой медицинскими организациями и другими организациями, входящими в частную систему здравоохранения, на территории инновационного центра «Сколково»)

What Is Fiberglass?

Fiberglass is actually a trademark.

But rather like Hoover or Kleenex, also both trademarks, it has become associated in the public mind with one thing – that is the pink insulating material used in walls and to line the attic of the average house as an insulating material.

(Though it is actually used in other forms for other applications as well.)

In reality, as the name suggests, fiberglass is made out of glass and it consists of superfine filaments (or “fibers” if you will). The insulating material is made up of filaments scattered at random on top of each other, but it is possible to weave these fibers together to create other more unusual applications of fiberglass.

Depending on how the fiberglass will be used then there may be other materials added to the mix to change the strength and durability of the end product. 

One popular example of this is fiberglass resin which can be painted over a surface to reinforce it but it may also be true of a fiberglass mat or sheet (often used in the construction of boat hulls or surfboards). 

Fiberglass is often confused by people with carbon fiber, but the two materials are not in the remotest bit chemically similar.

Even though they make look similar in certain applications, carbon fiber is made out of carbon, as the name suggests, glass, on the other hand, is made out of Silicon Dioxide and contains no carbon at all. 

Also read: Is PVC Pipe Flammable? Is it Fire Resistant?

Does It Catch Fire?

In theory, fiberglass can melt (doesn’t really burn), but only at very high temperatures (above an estimated 1000 degrees Fahrenheit). 

Melting glass and plastic is not a nice thing and it poses severe health risks if it splashes on you. It can result in far worse burns than a flame could bring and may adhere to the skin requiring medical assistance to remove.

So, if the fiberglass near you is melting, move away, and either use a fire extinguisher on it or call for help.

If you are ever in doubt of your ability to tackle a blaze, it’s always best to call the professionals, never take an unnecessary risk yourself. 

Also read: Is Paint Thinner Flammable? Technically No…

Does It Burn Easily?

Fiberglass does not burn easily and will actually melt in most cases, but only at very high temperatures.

This is good news for your home, but it does mean that you need to be careful about how you dispose of fiberglass – particularly because it is highly polluting. 

Also read: Is Epoxy Flammable? Yes and No…

Before You Order, Know Your Specs Inside Out

Photo by Casey Dunn

Fiberglass Door Sizes

Companies stock many options within a standard range, typically in 80-, 84-, and 96-inch heights and 2-inch width increments. For a prehung unit, you’ll need the dimensions of the rough opening and the total depth of the wall to determine jamb width. To order a slab, measure the height, width, and thickness of the door it is replacing and choose a stock size to match.

Swing

From the outside, facing an exterior door that swings inward (as most residential doors do): If the hinges are on the right-hand side, it’s a right-handed door, and vice versa.

Safety Codes

For extra security, you can order a prehung fiberglass door with a factory-installed three-point locking system, behind-the-jam metal brackets, and a steel plate in the core. In hurricane zones, make sure your door meets the impact requirements specified by local building codes.

Shown: Manufacturers offer a wide variety of clear, textured, leaded, and low-e glass. Similar to shown: Pulse collection prehung and paint-ready door, starting at $580; thermatru.com

Custom Fiberglass Doors

Split Doors

Many manufacturers offer the option of turning an entry door with a center rail into a Dutch door.

Shown: Two-panel Model A1202 prehung door, with Knotty Alder grain, from the Aurora Custom Fiberglass Collection, starting at $4,100; jeld-wen.com

Curves Ahead

Don’t assume you’re out of luck if the door you want to replace with a fiberglass model veers from the basic rectangle.

Shown: Eight-panel radius-top Model A1308 prehung door, with Knotty Alder grain, from the Aurora Custom Fiberglass Collection, starting at $4,500; jeld-wen.com

Ornamental Metalwork

Jazz up a plain entry with decorative hinges, door handles, or nail head trim. The wrought-iron grille design gives this door Garden District style.

Shown: Estate Cherry wood grain fiberglass slab door with Sycamore finish, from $1,495.

History

Glass fibers have been produced for centuries, but the earliest patent was awarded to the Prussian inventor Hermann Hammesfahr (1845–1914) in the U.S. in 1880.

Mass production of glass strands was accidentally discovered in 1932 when Games Slayter, a researcher at Owens-Illinois, directed a jet of compressed air at a stream of molten glass and produced fibers. A patent for this method of producing glass wool was first applied for in 1933. Owens joined with the Corning company in 1935 and the method was adapted by Owens Corning to produce its patented «Fiberglas» (spelled with one «s») in 1936. Originally, Fiberglas was a glass wool with fibers entrapping a great deal of gas, making it useful as an insulator, especially at high temperatures.

A suitable resin for combining the fiberglass with a plastic to produce a composite material was developed in 1936 by DuPont. The first ancestor of modern polyester resins is Cyanamid’s resin of 1942. Peroxide curing systems were used by then. With the combination of fiberglass and resin the gas content of the material was replaced by plastic. This reduced the insulation properties to values typical of the plastic, but now for the first time, the composite showed great strength and promise as a structural and building material. Many glass fiber composites continued to be called «fiberglass» (as a generic name) and the name was also used for the low-density glass wool product containing gas instead of plastic.

Ray Greene of Owens Corning is credited with producing the first composite boat in 1937 but did not proceed further at the time due to the brittle nature of the plastic used. In 1939 Russia was reported to have constructed a passenger boat of plastic materials, and the United States a fuselage and wings of an aircraft. The first car to have a fiber-glass body was a 1946 prototype of the Stout Scarab, but the model did not enter production.

Конструкция удочки

Есть 3 основные устоявшиеся конструкции: телескоп, штекер и монобланк. Все они имеют свои плюсы и минусы, и подходят для разных видов ловли:

Телескопическое удилище — самая народная конструкция. Телескопы компактны, и подходят для большинства способов ловли. Недостатки обусловлены самой конструкцией: больший вес, меньшая прочность из-за большого количества узлов, и меньшая чувствительность, потому как стыки на коленах гасят упругие колебания. Телескопические удилища худо-бедно справляются абсолютно со всеми видами ловли, а в некоторых случаях их использование оправдано. Например серфовые, фидерные и маховые удилища часто делаются телескопическими из-за своей длины, ради удобства транспортировки.

Штекерные удилища состоят из двух и более колен, и находятся классом выше телескопов. Штекер прочнее, легче, гибче и чувствительнее. Для некоторых видов ловли эти характеристики ключевые, поэтому штекер будет лучшим выбором в этих дисциплинах. К ним относятся спиннинг, кастинг, карпфишинг и некоторые другие виды. Для остальных видов ловли штекерная конструкция будет предпочтительна, но не во всех случаях практична, поэтому выбор за вами.

Монобланки — односоставные удилища. Относительно редкий тип конструкции, чаще всего встречается в нахлысте, боат-фишинге и зимней рыбалке. Иногда односоставными делают элитные кастинговые и спиннинговые удилища, особенно сверхлегкого класса. Для каждого из видов ловли такая конструкция обусловлена разными потребностями: в боат-фишинге требуется максимальная прочность, а в сверхлегком спиннинге максимальная чувствительность

В любом случае, такая конструкция предназначена в большей мере для специальных удилищ, и новичку не стоит задерживать на ней внимание.

В выборе конструкции удилища чаще всего руководствуются деньгами: штекер как правило дороже телескопа похожего класса. Размеры тоже имеют некоторое значение, иногда компактность телескопических удилищ может оказаться решающим фактором в выборе. 

Плюсы и минусы

Как и любой материал, стекловолокно имеет ряд плюсов и минусов в работе и носке. Учитывай их сразу, чтобы адаптировать технологию для себя или клиентов.

Плюсы:

  • Простота использования;
  • Быстрота обработки ногтей материалом – экономия времени мастера;
  • Подойдет и для новичков в наращивании;
  • Низкая цена закупки и себестоимость при формировании цены на услугу клиентам;
  • Прочность, легкость и гибкость материала в носке;
  • Нет необходимости строить архитектуру ногтя, материал идеально ложится по форме пластины изначально, повторяя её изгиб;
  • Легко выкладывается на ноготь, не требуется постановки форм;
  • Не проваливается под тяжестью базы;
  • Можно комбинировать с любыми другими видами материалов для ногтей – базой, гелем для наращивания;
  • Отсутствие аллергических реакций на сертифицированный материал.

Минусы:

Файбергласс полностью повторяет форму натурального свободного края и ногтевой пластины. Если она растет вверх или «клюет» вниз, она такой и останется при наращивании стекловолокном. Такую ситуацию придется исправлять дополнительными материалами для коррекции. Например, гелем или жесткой базой.

Properties

An individual structural glass fiber is both stiff and strong in tension and compression—that is, along its axis. Although it might be assumed that the fiber is weak in compression, it is actually only the long aspect ratio of the fiber which makes it seem so; i.e., because a typical fiber is long and narrow, it buckles easily. On the other hand, the glass fiber is weak in shear—that is, across its axis. Therefore, if a collection of fibers can be arranged permanently in a preferred direction within a material, and if they can be prevented from buckling in compression, the material will be preferentially strong in that direction.

Furthermore, by laying multiple layers of fiber on top of one another, with each layer oriented in various preferred directions, the material’s overall stiffness and strength can be efficiently controlled. In fiberglass, it is the plastic matrix which permanently constrains the structural glass fibers to directions chosen by the designer. With chopped strand mat, this directionality is essentially an entire two-dimensional plane; with woven fabrics or unidirectional layers, directionality of stiffness and strength can be more precisely controlled within the plane.

A fiberglass component is typically of a thin «shell» construction, sometimes filled on the inside with structural foam, as in the case of surfboards. The component may be of nearly arbitrary shape, limited only by the complexity and tolerances of the mold used for manufacturing the shell.

The mechanical functionality of materials is heavily reliant on the combined performances of both the resin (AKA matrix) and fibers. For example, in severe temperature conditions (over 180 °C), the resin component of the composite may lose its functionality, partially due to bond deterioration of resin and fiber. However, GFRPs can still show significant residual strength after experiencing high temperatures (200 °C).

Types of glass fiber used

The most common types of glass fiber used in fiberglass is E-glass, which is alumino-borosilicate glass with less than 1% w/w alkali oxides, mainly used for glass-reinforced plastics. Other types of glass used are A-glass (Alkali-lime glass with little or no boron oxide), E-CR-glass (Electrical/Chemical Resistance; alumino-lime silicate with less than 1% w/w alkali oxides, with high acid resistance), C-glass (alkali-lime glass with high boron oxide content, used for glass staple fibers and insulation), D-glass (borosilicate glass, named for its low Dielectric constant), R-glass (alumino silicate glass without MgO and CaO with high mechanical requirements as Reinforcement), and S-glass (alumino silicate glass without CaO but with high MgO content with high tensile strength).

Pure silica (silicon dioxide), when cooled as fused quartz into a glass with no true melting point, can be used as a glass fiber for fiberglass but has the drawback that it must be worked at very high temperatures. In order to lower the necessary work temperature, other materials are introduced as «fluxing agents» (i.e., components to lower the melting point). Ordinary A-glass («A» for «alkali-lime») or soda lime glass, crushed and ready to be remelted, as so-called cullet glass, was the first type of glass used for fiberglass. E-glass («E» because of initial Electrical application), is alkali-free and was the first glass formulation used for continuous filament formation. It now makes up most of the fiberglass production in the world, and also is the single largest consumer of boron minerals globally. It is susceptible to chloride ion attack and is a poor choice for marine applications. S-glass («S» for «stiff») is used when tensile strength (high modulus) is important and is thus an important building and aircraft epoxy composite (it is called R-glass, «R» for «reinforcement» in Europe). C-glass («C» for «chemical resistance») and T-glass («T» is for «thermal insulator»—a North American variant of C-glass) are resistant to chemical attack; both are often found in insulation-grades of blown fiberglass.

Table of some common fiberglass types

Material Specific gravity Tensile strength MPa (ksi) Compressive strength MPa (ksi)
Polyester resin (Not reinforced) 1.28 55 (7.98) 140 (20.3)
Polyester and Chopped Strand Mat Laminate 30% E-glass 1.4 100 (14.5) 150 (21.8)
Polyester and Woven Rovings Laminate 45% E-glass 1.6 250 (36.3) 150 (21.8)
Polyester and Satin Weave Cloth Laminate 55% E-glass 1.7 300 (43.5) 250 (36.3)
Polyester and Continuous Rovings Laminate 70% E-glass 1.9 800 (116) 350 (50.8)
E-Glass Epoxy composite 1.99 1,770 (257)
S-Glass Epoxy composite 1.95 2,358 (342)

Что и зачем заказывать из Китая

На самом деле, можно и не заказывать – все перечисленные в статье товары есть в свободной продаже в офлайн и онлайн магазинах, но на Aliexpress и подобных площадках есть два важных преимущества:

  • низкая цена. Разница может достигать 2-3 раз за идентичные товары;
  • огромный выбор. Такого разнообразия, как на AliExpress нет ни в одном российском магазине.

Сегодня рассмотрим несколько категорий товаров:

  • безворсовые салфетки;
  • бафы и пилки;
  • палитры-имитации ногтей;
  • защитные накладки на ногти для нанесения гель-лака;
  • колпачки для снятия гель-лака;
  • формы для наращивания;
  • бутылки с помпой для жидких средств.

Перечисленные 5 категорий можно без страха заказывать на Алиэкспресс, при этом хорошо сэкономив.

Кому выгодно заказывать на Aliexpress:

  • тем, у кого нет поставщиков – это мелкие салоны, одиночные мастера. Заказ у поставщиков может быть выгоднее, но если закупать все в розничных магазинах – себестоимость процедуры значительно возрастает и Aliexpress становится прекрасной альтернативой;
  • девушкам, которые делают маникюр сами себе дома. Поставщиков у этой категории покупателей нет, а значит, и сэкономить не получится;
  • тем, кто планирует закупку расходников заранее. Товары из Китая придется подождать. Срок составляет от 15 до 60 дней и во многом зависит от работы Почты России. В любом случае, заказывать расходники придется заранее, а не когда они уже кончились.

А теперь рассмотрим самых популярных продавцов.

Construction methods

Filament winding

Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed-end structures (pressure vessels or tanks). The process involves winding filaments under tension over a male mandrel. The mandrel rotates while a wind eye on a carriage moves horizontally, laying down fibers in the desired pattern. The most common filaments are carbon or glass fiber and are coated with synthetic resin as they are wound. Once the mandrel is completely covered to the desired thickness, the resin is cured; often the mandrel is placed in an oven to achieve this, though sometimes radiant heaters are used with the mandrel still turning in the machine. Once the resin has cured, the mandrel is removed, leaving the hollow final product. For some products such as gas bottles, the ‘mandrel’ is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.

Filament winding is well suited to automation, and there are many applications, such as pipe and small pressure vessels that are wound and cured without any human intervention. The controlled variables for winding are fiber type, resin content, wind angle, tow or bandwidth and thickness of the fiber bundle. The angle at which the fiber has an effect on the properties of the final product. A high angle «hoop» will provide circumferential or «burst» strength, while lower angle patterns (polar or helical) will provide greater longitudinal tensile strength.

Products currently being produced using this technique range from pipes, golf clubs, Reverse Osmosis Membrane Housings, oars, bicycle forks, bicycle rims, power and transmission poles, pressure vessels to missile casings, aircraft fuselages and lamp posts and yacht masts.

Fiberglass hand lay-up operation

A release agent, usually in either wax or liquid form, is applied to the chosen mold to allow the finished product to be cleanly removed from the mold. Resin—typically a 2-part thermoset polyester, vinyl, or epoxy—is mixed with its hardener and applied to the surface. Sheets of fiberglass matting are laid into the mold, then more resin mixture is added using a brush or roller. The material must conform to the mold, and air must not be trapped between the fiberglass and the mold. Additional resin is applied and possibly additional sheets of fiberglass. Hand pressure, vacuum or rollers are used to be sure the resin saturates and fully wets all layers, and that any air pockets are removed. The work must be done quickly before the resin starts to cure unless high-temperature resins are used which will not cure until the part is warmed in an oven. In some cases, the work is covered with plastic sheets and vacuum is drawn on the work to remove air bubbles and press the fiberglass to the shape of the mold.

Fiberglass spray lay-up operation

The fiberglass spray lay-up process is similar to the hand lay-up process but differs in the application of the fiber and resin to the mold. Spray-up is an open-molding composites fabrication process where resin and reinforcements are sprayed onto a mold. The resin and glass may be applied separately or simultaneously «chopped» in a combined stream from a chopper gun. Workers roll out the spray-up to compact the laminate. Wood, foam or other core material may then be added, and a secondary spray-up layer imbeds the core between the laminates. The part is then cured, cooled, and removed from the reusable mold.

Pultrusion operation

Diagram of the pultrusion process

Pultrusion is a manufacturing method used to make strong, lightweight composite materials. In pultrusion, material is pulled through forming machinery using either a hand-over-hand method or a continuous-roller method (as opposed to extrusion, where the material is pushed through dies).
In fiberglass pultrusion, fibers (the glass material) are pulled from spools through a device that coats them with a resin. They are then typically heat-treated and cut to length. Fiberglass produced this way can be made in a variety of shapes and cross-sections, such as W or S cross-sections.

Что в итоге лучше, фибергласс или алюминий?

Конечно же, фибергласс – материал инновационный и перспективный. Но неправильная работа с этим материалом делает его менее привлекательным для покупателя. Производители часто выбирают самые дешевые сорта пластика, которые обладают худшими свойствами и при этом сохраняет высокую хрупкость. Также нужно учитывать, что одинаковое построение каркаса из алюминия и фибергласса не возможно. На данный момент для рядового пользователя, а особенно – для пользователя зимней палатки, лучше выбирать алюминиевый каркас. Он ремонтопригоден и, в любом случае, будет обладать большей пластичностью – т.е. лучше гнуться без повреждения. Но при этом алюминий будет тяжелее и дуги будут со временем «проседать» (т.е. придётся выгибать их в обратную сторону для выпрямления руками).

От: admin

Эта тема закрыта для публикации ответов.

Список источников

  • www.thisoldhouse.com
  • www.homestratosphere.com
  • markforged.com
  • firefighterinsider.com
  • armma.ru
  • EcoBelTex.ru
  • detailedpedia.com
Оцените статью
Охотничий портал
Добавить комментарий